
 An Innovative Algorithm for Flash memory 
M. N. Kale , A. S. Jahagirdar 

PDVVPCOE Department of IT - MITCOE Department of IT, Pune university- Pune University 
Ahmednagar, Maharashtra, India - Pune, Maharashtra, India 

 
Abstract –Today NandFlash Memory(hence fort simply 
referred to as Flash) is used in handhold electronic devices 
like mobile, cameras, iPODS, music players, PDAS due to it’s 
characteristics light weight, low power consumption, shock 
resistant and faster access. Today Flash is also used as an 
alternative storage medium for Hard Disk Drives (HDD) in 
PCs and Labtops.  Though Flash has a faster access and is a 
good alternative storage media for HDD, it has some 
limitations too. Firstly Flash does not support update 
operation, unlike HDD which supports the basic operations 
directly .i.e. read, write and update, Flash, instead supports 
read, write and erase operations. Secondly Flash is neither 
byte addressable like Random Access Memory(RAM) nor it is 
sector addressable like HDD but instead the units of read, 
write and erase operations in Flash are uneven, it reads and 
writes in pages and erases in block. Third limitation of Flash 
is that it can not overwrite (update) data but it can write data 
only to an already erased place. i.e. Flash can write data only 
to a clean place, therefore an update must be preceded by 
erase operation in Flash Memory. Hence to update any data 
Flash does not write the data at the same place but it has to 
provide a mechanism to write the data to be updated at some 
clean (erased) place in Flash. This is called as “out of place 
update”. To support the out of place update operation a 
middleware called as Flash Translation Layer (FTL) is 
accompanying the Flash memory, which resides inside a small 
controller that is mounted within the flash storage medium. 

Various trade offs arises in the design of FTLs, depending 
upon the various address mapping schemes used for logical to 
physical address translation. 

Various researchers have invented different FTL design to 
optimize the performance while achieving the objectives and 
goals. This paper takes a review of all these FTL schemes and 
presents an innovative idea to improve the performance of the 
FTL presented earlier. The paper is organized into four 
sections. Section I is introduction. Section II takes review of 
different FTL schemes. Section III describes proposed 
innovative idea for FTL namely Meta paged Flash Translation 
Layer (MPFTL) . Section IV describes software design for 
proposed system. Section V describes the experimental setup 
required to test the results. Finally section V is conclusion. 

 

I. INTRODUCTION 

Address mapping or address translation is the 
functionality used to support out of place update operation 
in Flash. For an out of place update operation the 
functionality of address mapping or address translation 
works as follows: receives the logical address say La of the 
page to be updated from the host system (may be an 
operating system which is sending the read or write 
requests to Flash), write that page in some clean area in 
Flash say at physical address Pa, store the address La and 
its’ corresponding physical address Pa into a table called as 
mapping table. It invalidates the pages containing the old 
data. This is shown below in figure 1. 

Thus out of place update also requires frequently 
initiating the process of garbage collection to recycle all the 
invalid pages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Flash memory interface 

Depending upon the granularity of mapping unit either 
page or block the mapping scheme has been categorized as 
page level, block level and hybrid mapping scheme. These 
schemes are described in next section. 

II. REVIEW OF PREVIOUS FTL SCHEMES 

A. Page level Mapping 

This is a very flexible scheme in that a logical page can 
be mapped into any physical page in flash memory [1]. In 
addition to this feature, since it does not require expensive 
full merge operations described in the next subsection, it 
shows a good overall performance for both read and write 
operations. This intrinsic merit, however, brings about its 
critical demerit–large size of memory requirements. That 
is, the size of mapping table may be too large to be resided 
in SRAM of FTL. For example, let us consider a flash 
memory of 4GB size and a page size of 2 KB, this requires 
2 million numbers of page mapping information to be 
stored in SRAM. In this case, assuming each mapping 
entry needs 8bytes, 16MB memory space is required only 
for the mapping table. This may be infeasible for the 
economic reasons.   

B.  Block  level Mapping[2] 

 In a block level address mapping, a logical page address 
is made up of both a logical block number and its 
corresponding offset. This approach retains an inevitable 
disadvantage. When the overwrite operations to logical 
pages are issued, the corresponding block must be migrated 
and remapped to a free physical block as follows: The valid 
pages and the updated page of the original data block are 

M. N. Kale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4371 - 4376

4371



copied to a new free physical block, and then the original 
physical block should be erased. When it comes to a block 
level mapping, this Erase-before-Write characteristic is an 
unavoidable performance bottleneck in write operations. 

C. Hybrid Mapping:[10]  

To overcome the shortcomings of the page level and 
block level mapping, a variety of hybrid schemes have been 
proposed.  In these schemes the log blocks are used to 
temporarily record updates to improve the write 
performance. 

1) BAST (Block Associative Sector Translation) 
scheme BAST[8] classifies blocks into two types, namely, 
data blocks for data saving and log blocks for overwrite 
operations. Each data block has associated with it a 
separate log block. Therefore this scheme suffers from low 
block utilization due to log block thrashing 

2) FAST (Fully Associative Sector Translation) 
FAST[7] is based on BAST scheme but allows log blocks 
to be shared by all data blocks unlike BAST in which data 
blocks are associated to log blocks exclusively. This 
scheme subdivides log blocks into two types: sequential log 
blocks for switch operations and random log blocks for 
merge operations. Even though this accomplished better 
utilization of log blocks, it still remains in low utilization if 
overwrite operations are repeatedly requested only to the 
first page of each block. Moreover, random log blocks give 
rise to the more complicated merge operations due to fully 
associative policy.  

3) Super Block scheme: Super Block Scheme[6] 
attempts to exploit the block level spatial locality in 
workloads by allowing the page level mapping in a 
superblock which is a set of consecutive blocks. This 
separates hot data (frequently updated data) and non-hot 
data into different blocks within a superblock and 
consequently the garbage collection efficiency is achieved 
thereby reducing the number of full merge operations. 
However, this approach uses a three-level address 
translation mechanism which leads to multiple accesses of 
spare area to serve the requests. In addition, it also uses a 
fixed size of superblock explicitly required to be tuned 
according to workload requirements and does not 
efficiently make a distinction between cold and hot data. 

4) LAST (Locality-Aware Sector Translation): 
LAST[5] scheme adopts multiple sequential log blocks to 
make use of spatial localities in workload in order to 
supplement the limitations of FAST. It classifies random 
log buffers into hot and cold partitions to alleviate full 
merge cost. LAST, as the authors mentioned, relies on an 
external locality detector for its classification which cannot 
efficiently identify sequential writes when the small-sized 
write has a sequential locality. Moreover, the fixed size of 
the sequential log buffer brings about the overall garbage 
collection overhead.  

5) AFTL (Adaptive Two-Level Flash Translation 
Layer):AFTL[3] scheme maintains latest recently used 
mapping information with fine-grained address translation 
mechanism and the least recently used mapping 
information with coarse-grained mechanisms due to the 

limited source of the fine-grained slots. Notwithstanding 
this two-level management, even though there are the large 
amounts of hot data, they all cannot move to fine-grained 
slots due to the limited size of fine-grained mechanism. 
That is, coarse-to-fine switches incur corresponding fine-
to-coarse switches, which causes overhead in valid data 
page copies. Additionally, only if all of the data in its 
primary block appear in the replacement block, both 
corresponding coarse-grained slot and its primary block can 
be removed, which leads to low block utilization.  

6) DFTL Scheme: DFTL[5] maintains two types of 
tables in SRAM, namely, Cached Mapping Table (CMT) 
and Global Translation Directory (GTD). CMT stores only 
a small number of page mapping information like a cache 
for a fast address translation in SRAM. Advantages and 
Disadvantages of DFTL: It achieves high block utilization, 
also it completely remove full merge operations. As a 
result, it improves overall performance and outperforms 
state-of-the-art hybrid FTLs in terms of write performance, 
block utilization, and the number of merge operations. 
However, DFTL suffers from frequent updates of 
translation pages in case of write dominant access patterns 
or garbage collection. To alleviate this problem, it uses 
delayed updates and batch updates in CMT with the aim of 
delaying the frequent updates. DFTL achieves a good write 
performance but cannot achieve as good read performance 
as hybrid FTLs under read dominant workloads due to its 
intrinsic two-tier address translation overhead. It costs an 
extra page read in flash when the request does not hit the 
CMT. Therefore DFTL cannot outperform hybrid mapping 
schemes using direct (i.e., one-level) address translation 
especially under randomly read intensive environments 

III. PROPOSED SYSTEM 

The proposed system is based on page level mapping. It 
is based on idea of storing the complete page map table in 
flash itself [1]. Initially it starts with block level mapping at 
the start up. Then complete flash is mapped using block 
mapping. This table is called as block map table, which is 
kept in SRAM i.e. in the controller’s memory. But later on 
the mapping goes on switching from block level to page 
level as update request proceeds. This is done as follows: 
For read and write request the block mapping table is first 
searched and used if the block entry containing the 
requested page is found. But if update request is to be 
processed then a switch of mapping granularity takes place. 
In case of update request the block number of the requested 
page is calculated if the block entry is found in block 
mapping table all the pages in that block are switched to 
page mapping. The page map table is maintained in the 
Flash itself and the pages containing the mapping 
information in Flash are referred to as metapages. There is 
a directory maintained in RAM storing the addresses of 
these metapages. This directory is called as Metadirectory. 

If for the issued read or write operation the 
corresponding block number entry is not found in block 
map table then only the page map table is concerned. For 
this the metapage i.e. page containing the mapping 
information is read into memory to locate the address of the 
requested page. Then the data is updated. This requires 
creating new metapage as mapping information for the 

M. N. Kale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4371 - 4376

4372



requested page is to be changed. Hence it it as well requires 
invalidating the old metapage.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 2 Architecture of DPFTL 
 

As seen earlier in hybrid schemes, log blocks eventually  
need to be erased and this will trigger a merge operation. A 
merge operation can be expensive and cause a number of 
log block erasures. Merge operations can be classified into 
three types: switch merge, partial merge, and full merge. A 
switch merge is triggered only when all pages in a block 
are sequentially updated from the first logical page to the 
last logical page. A partial merge is similar to the switch 
merge except for additional valid page copies. A full merge 
requires the largest overhead among merge operations. An 
FTL allocates a free block and copies the all valid pages 
either from the data block or from the log block into the 
free block. After copying all the valid pages, the free block 
becomes the data block and the former data block and the 
log block are erased. A variety of hybrid mapping schemes 
has been proposed.  

A. Scope 
NAND Flash is used as portable storage medium for 

computers, digital cameras, cell phones and other devices. 
In consumer devices, flash memory is widely used in: 
 Notebook computers 
  Personal computers 
 Digital cameras 
 Cell phones  
 Solid-state music players such as Electronic 

musical instruments 
 Embedded computers, Solid-state disk drives 
 MP3 players 
 Television set-top boxes 
 Security systems  
 Military systems 
 Retail management products, Medical products 
 Networking and communication products  
 Wireless communication devices 
 

In all the NAND Flash applications FTL is used required 
for doing the logical to physical mapping of data 
sectors/pages/blocks i.e. whatever is the concerned unit. 

B. Goals 

The goals of the project are: Reduce garbage collection 
overhead over the existing FTL schemes,. reduce the 
mapping table size over the existing FTL schemes, enhance 
the endurance of NAND Flash, enhance space utilization of 
NAND flash.  

C.  Constraints 

Power-off recovery: When a sudden power-off event 
occurs during FTL operations, FTL data structures should 
be preserved and data consistency should be guaranteed 

D. Steps to acquire input 

The set of total I/Os issued by some realistic workload 
running on some computer is the input for this project. This 
I/O load is in the form of a text file called as trace file. The 
trace files for various categories of workload are available 
on the website of Storage Performance Council (CPU). 

  In order to create a list of the I/O parameters, the 
characteristics of the representative workloads are analyzed 
by SPC. To accomplish this, the individual I/O commands 
issued by the host processor(s) are collected and analyzed. 
Since many different analysis programs may be used, and 
since these programs will in all probability be run “after the 
fact”, a goal of the SPC is to collect I/O trace data from 
various systems for later analysis. 

With the variety of hardware platforms, operating 
systems, and data collection techniques that exist, analysis 
of the collected trace data would be next to impossible 
without a well-defined common file format for the traces. 

The trace file has been constructed with the goal to 
specify both a necessary and sufficient amount of 
information that is sufficient to allow reproduction of the 
essence of the original workload. This goal is constrained 
by the realization that not all relevant data may be collected 
from all operating systems, and that finite resources exist 
for collection, storage, and analysis of the trace data. Two 
I/O traces from OLTP applications running at two large 
financial institutions are available from web sites. These 
traces are made available courtesy of Ken Bates from HP, 
Bruce McNutt from IBM and the Storage Performance 
Council (SPC). These traces have been downloaded as trace 
files. The trace files can also be generated using Diskmon 
tool.   

E. Steps to process input 

FlashSim[11] is an event-driven simulator that follows 
the objected-oriented programming paradigm for 
modularity. The supplied input trace file is first processed 
by the program to generate a list of events, which then 
serves as the input for the FTL. The NAND Flash simulator 
is written as a single-threaded program in C++ for 
simplicity. C++ could provide a comprehensible object-
oriented scheme where each class instance represented a 
hardware or software component. The Flash Simulator is 
integrated with Disksim’s C code 

 

M. N. Kale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4371 - 4376

4373



VI. SOFTWARE DESIGN 

A. Classes in the simulator for hardware c components 

 SSD: The SSD class serves to provide an interface to 
Disksim and provide a single class to instantiate in order to 
create the simulator module. The SSD class creates event 
objects to wrap the Disksim ioreq event structures and 
returns the event time to disksim. 

 Package: The package class represents a group of flash 
dies that share a bus channel. The package class allocates 
its dies in its constructor and connects the dies to a bus 
channel. The package also facilitates addressing. 

 Die: A die is a single flash memory chip that is 
 organized into a set of planes. Dies are connected to bus 

channels, but individual planes contained in the die buffer 
bus transfers. The highest level at which merge operations 
may take place should be at the die level. The 
corresponding event object is updated with the merge delay 
time. 

 Plane: Planes are comprised of blocks and provide a 
 single page-sized register to buffer page data for bus 

transfers. The register is also used as a buffer for merge 
operations inside planes. The corresponding event object is 
updated with merge delays for merge operations and 
considers register delays. 

 Block: A block is comprised of pages and is the 
smallest component that can be individually erased. When 
a block is erased, all pages in it are erased and can then be 
written to again. The corresponding event object is updated 
with the erase delay time. A block can only be erased a 
finite number of times because of reliability constraints. 

 Page: Each page maintains its state and updates event 
objects with the read and write, delays of the given flash 
technology. Page states include free/empty after erasure, 
valid after a successful write, and invalid after being copied 
to a new location in a merge operation. 

 Controller: The controller class receives event objects 
from the SSD and consults the FTL regarding how to 
handle each event. The controller sends the virtual data for 
events to the  

RAM for buffering before sending the event object to the 
bus. 

• RAM: The RAM class calculates how long it takes to 
read or write data to itself. The RAM buffers virtual event 
data for the controller to send across the bus. 

• Bus: The bus class has a number of channels that are 
each shared by all the dies in a package. The bus examines 
addresses in events and passes the event object on to the 
proper channel. 

• Channel: Channels must schedule usage for events and 
update the event time values. Each channel keeps a 
scheduling table that keeps track of channel usage, and new 
events are scheduled at the next available free time slot 
after dependencies have been met. The scheduling table 
size is synonymous to queue length. 

B. Classes in the  simulator  for Software Components 

Event: First, the event class keeps track of its 
corresponding Disksim I/O request event structure. Second, 
the event class holds methods and attributes to do all the 
record-keeping for the simulator’s state, including SSD 

addresses. Simulator objects pass event class objects and 
update the event objects statistics. 

Address: Addresses are comprised of a separate field for 
each hardware address level from the package down to the 
page. An address class instead of a struct to help make a 
clear interface to assign and validate addresses can be 
provided  

FTL: The FTL provides address translation from logical 
addresses to physical addresses. It determines how to 
process events that involve many pages by producing a list 
of single-page events to be processed in-order by the 
controller. The FTL is responsible for taking advantage of 
hardware parallelism for performance. The FTL also has a 
wear leveler and garbage collector to facilitate its tasks. 

Wear Leveler: The wear leveler class helps spread the 
block erasures over all blocks in the SSD. The wear leveler 
is responsible for keeping as many blocks functional for as 
long as possible because blocks of pages can only be erased 
for reuse a finite number of times. 

Garbage Collector: The garbage collector is activated 
when a write request cannot be satisfied because the 
selected block is not writable or there is not enough free 
space in the selected block. The garbage collector seeks to 
merge partially-used blocks and free up blocks by erasing 
them. 

The SSD simulator is instantiated as a SSD object 
designed to accept i/o request structures from Disksim. The 
SSD controller uses the FTL software module to create a 
list of events for a page request. The controller issues each 
event in the list to the data hardware through corresponding 
bus channels. The bus channels handle the scheduling and 
interleaving of events for the controller; this will simplify 
the controller implementation. Events continue through the 
package and are handled starting at the die level; merge 
events can be handled inside flash dies or planes. Erase 
events are handled inside blocks, and read and write events 
are handled inside pages. The SSD and package 
components are included in the call stack after consulting 
the bus channel because these components also keep track 
of wear statistics. Wear statistics stored in the SSD, 
package, die, plane, and block are updated every time an 
erase event occurs to keep a simple interface with lower 
algorithmic complexity for the FTL 

C. Database design 

Database is in the form of trace file. In order to create a 
list of the I/O parameters associated with a specific 
benchmark, the characteristics of the representative 
workloads should be analyzed and well understood. To 
accomplish this, the individual I/O commands issued by the 
host processor(s) are collected and analyzed. Since many 
different analysis programs may be used, and since these 
programs will in all probability be run “after the fact”, a 
goal of the SPC is to collect I/O trace data from various 
systems for later analysis format. The trace file is 
composed of variable length ACSII records, rather than 
binary data. Although this format is somewhat wasteful of 
storage space and places higher CPU demands on analysis 
programs, it offers many advantages from a legibility and 
portability standpoint. Each record in the trace file 
represents one I/O command, and consists of several fields 

 

M. N. Kale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4371 - 4376

4374



The following is an example of the first few record of a 
trace file: 

0,20941264,8192,W,0.551706,Alpha/NT 
0,20939840,8192,W,0.554041 
The individual fields are separated by a comma (hex 

2C), with the trace record being terminated by a newline 
character (\n).  

There is no special end-of-file delimiter; that function 
being left to the individual operating systems. 

D. Implementation 

The project is implemented using an SSD simulator. This 
simulator [11] is designed object oriented language and can 
be integrated with any FTL designed by the testers. Initially 
the project will create an SSD object, which will process 
the read and write requests. These read and write requests 
provided to the SSD are in the form of a text file called as 
trace file, whose format is described in earlier section. The 
SSD object requires a controller which. A controller uses an 
FTL. This FTL used will be the FTL designed by the 
simulator  

V. EXPERIMENTAL SETUP 

For experimental result simulation of a 32GB NAND 
flash memory with configurations shown in table below is 
done.  

TABLE I                                                                                                                           

FLASH MEMORY CONFIGURATION 

Input Parameters Values 

Page read to register 25μ 

Page write from register 200μ 

Block Erase 1.5 ms 

Serial Access to register data 
b )

50μ 

Page size 4KB 

Data register size 2KB 

Block size 256KB 

 
To test all the cases of workloads various types of 

workloads are selected as shown in table below. 
Websearch3 and financial1 and financial2 traces are made 
by Storage Performance Council (SPC). Websearch3 is a 
good read intensive I/O trace. 

TABLE II                                                                                                                         

TYPES OF WORKLOADS 

Workloads Requests Ratio 
(Read : Write) 

Inter-
arrival 
Time (avg.) 

Websearch3 R:99% W: 1% 70 ms 
Financial1 R:22% W:78%  8  ms 
Financial2 R: 82% W:18% 11 ms 
Random_read R: 99% W:1% 11 ms 
Random_write R:10%W: 90% 11 ms 

 
Financial1 shows a good write intensive workload and is 

collected from an OLTP application running at a financial 
institution.  

 
 

VI. CONCLUSION 

Proposed idea i.e. Meta Paged Flash Translation Layer 
(MPFTL) is page level mapping scheme and avoids 
recursive merge and full merge required during garbage 
collection [1]. IT achieves high block utilization and hence 
improves overall performance.  

 

 
 

Fig. 2 Response time 

From the response time got from the various workload it 
is observed that the proposed innovative algorithm 
outperforms the FAST scheme. FAST is taken as a 
representative scheme for comparison as it is has been 
considered an optimal one among the various FTL schemes 
that are available. The merge operation required during 
garbage collection specially in random write workload is 
eliminated and the random write performance is improved 
very much in case of the proposed scheme i.e. Mata Paged 
FTL (MPFTL). However in case of sequential read the 
MPFTL does not outweighs the FAST scheme but gives a 
comparative performance with FAST i.e. in case of the 
workload websearch3 both the schemes have near about 
same performance. 

The future scope of this project is improve better data 
structure for managing the page table, so that the look time 
for the page search operation is improved.  

 
REFERENCES 

[1]  A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a Flash Translation 
Layer Employing Demand-based Selective Caching of Page-level 
Address Mappings,” in ASPLOS, 2009. 

[2]  Liu D.,   Wang Y.,   Qin Z.,  Shao Z.,   Guan Y.:  A Space Reuse 
Strategyfor Flash Translation Layers in SLC NAND Flash Memory 
Storage Systems, IEEE Transactions on Very Large Scale 
Integration  

  (VLSI) Systems, pages 1-14, May – 2011, ISSN: 1063-8210 
Volume: PP  Issue:99  

[3]  Hsin Hung Lin, “An Adaptive Flash Translation Layer for High-
Performance Storage Systems” IEEE Transactions on page: 953 – 
965, June 2010, ISSN: 02780070, Volume: 29 

[4]  Shin I.: Light weight sector mapping scheme for NAND-based 
block devices,  IEEE Transactions on Consumer Electronics, pages: 
651 – 656, May 2010, ISSN: 0098-3063 Volume: 56 Issue:2  

[5]  S. Lee, D. Shin, Y. Kim, and J. Kim. LAST: Locality-Aware Sector 
Translation for NAND Flash Memory-Based Storage Systems. In 
Proceedings of the International Workshop on Storage and I/O 
Virtualization, Performance, Energy, Evaluation and Dependability 
(SPEED2008), Feburary 2008. 

[6]  J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based 
FlashTranslation Layer for NAND Flash Memory. InProceedingsof 
the International Conference on Embedded Software (EM-SOFT) , 
pages 161–170, October 2006. ISBN 1-59593-542-8. 

[7]  S. Lee, D. Park, T. Chung, D. Lee, S . Park, and H. Song. A Log 
Buffer based FlashTranslation Layer Using Fully Associative 

M. N. Kale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4371 - 4376

4375



Sector Translation. IEEE Transactions on Embedded Computing 
Systems, 6(3):18, 2007. ISSN 1539–9087. 

[8]  T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. 
Song, “A  survey  of  Flash Translation Layer,” J. Syst. Archit., vol. 
55, no. 5-6, 2009. 

[9]  UMass, “Websearch Trace from UMass Trace Repository,” 
http://traces.cs.umass.edu/index.php/Storage/Storage, 2002. 

[10]  Chung, D. Park, S . Park, D. Lee, S. Lee, and H. Song. System 
Software for Flash Memory: A Survey. In Proceedings of the 
International Conference on Embedded and Ubiquitous Computing, 
pages 394–404, August 2006. 

[11] “FlashSim: A Simulator for NAND Flash-Based Solid-State Drives” 
in Advances in System Simulation, 2009. SIMUL '09. First 
International Conference on pages 125-131 ISBN: 978-1-4244-
4863-0 

 
 
 

M. N. Kale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4371 - 4376

4376




